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Extensive Monte Carlo simulations have been performed to analyze the dynami- 
cal behavior of the three-dimensional Ising model with local dynamics. We have 
studied the equilibrium correlation functions and the power spectral densities 
of odd and even observables. The exponential relaxation times have been 
calculated in the asymptotic one-exponential time region. We find that the 
critical exponent z=2.09+0.02 characterizes the algebraic divergence with 
lattice size for all observables. The influence of scaling corrections has been 
analyzed. We have determined integrated relaxation times as well. Their dyna- 
mical exponent Zin t agrees with z for correlations of the magnetization and its 
absolute value, but it is different for energy correlations. We have applied a 
scaling method to analyze the behavior of the correlation functions. This 
method verifies excellent scaling behavior and yields a dynamical exponent z~cal 
which perfectly agrees with z. 
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1. I N T R O D U C T I O N  

Critical phenomena are characterized by a dramatic increase of the correla- 
tion length and of the relaxation time of a system. Both the characteristic 
length scale and time scale diverge at the critical point. This phenomenon 
has been the subject of intensive theoretical and experimental research for 
a long time. By renormalization group (RG) methods it has been shown 
that the static critical behavior depends on only a few characteristics of the 
system, such as symmetry, dimension, and interaction type. RG approaches 
have led to universal properties, e.g., critical exponents, amplitude ratios, 
and scaling functions, which are in good accord with high-temperature 
expansions, Monte Carlo simulations, and experiments. 

1 Theoretische Physik III, Ruhr-Universit/it Bochum, Germany. 
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In analogy to static critical phenomena, scaling of dynamical properties 
was formulated at the very beginning of the renormalization group age. (1) 
It has been shown that the static universality classes are not the same as 
the dynamic ones. (2) The latter depend on the conservation laws and on 
the coupling of the system to additional degrees of freedom and their con- 
servation laws. The quantity of central interest is the dynamical exponent 
z which describes the scaling behavior, x(q ,o . ) ) - -q - (Z-~+z l )~o(O)q-Z) ,  

of correlation functions at the critical point of the infinite system. (2) 
Dynamical finite-size scaling leads to the divergence r ( L ) , ~ L  ~ of the 
asymptotic relaxation time of finite lattices. (3'4) The integrated relaxation 
time for a given observable ~ is an integral measure of all relaxation 
processes of the system weighted according to their contributions to d .  
It diverges with an exponent zint.~, leading to increasing computing times 
at the critical point. (5) 

In this paper, we are concerned with the local dynamics of the three- 
dimensional Ising model at its critical point. This dynamics corresponds to 
the model A type (no conservation laws) (2) and has been treated in a large 
number of papers. The corresponding time-dependent Ginzburg-Landau- 
Wilson (GLW) model has been studied by RG methods. A perturbation 
expansion has been performed around the critical dimension dc= 4 in 
e = dc - d and in l /n ,  respectively, where n is the spin dimension. Above the 
critical dimension dc = 4, one finds conventional van Hove theory with 
z = 2 - q  = 2. Below de, the perturbation expansion leads only to tiny 
corrections which depend on the spin dimension n, on the order in e, 
and on the parametric form that is evaluated from the a-expansion. (6) 
For Ising systems ( n = l ) ,  the form z = 2 - q + A *  extrapolates to 
z=1.995, using the best result (6) A*=0.032(1-0 .216e)+O(e  4) and 
q =0.03 in d =  3 dimensions. (7) Using the parametrization z = 2 -  cq with 
c = O . 0 7 2 6 1 ( 1 - 1 . 6 8 7 e ) + O ( e 2 ) ,  (6) one obtains z=1.984 in d = 3 .  In a 
later work about interface fluctuations in Ising systems, a critical exponent 
z = 2 + e ' - e  '2+O(e  '3) was derived by expansion around d ~ = l  
(e' = d - 1 ) .  (8) A tentative interpolation of this result with the expansion 
around dc = 4 leads to z = 2.017. 

A distinctly different conclusion was obtained by a high-temperature 
expansion of the simple cubic Ising model with Glauber dynamics. Based 
on the magnetization-correlation function, the relaxation time was shown 
to diverge as ~ ~ ~-v~ with vz = 1.40 near the critical point (e = T / T c - 1 ) .  
With the static exponent v = 0.63, one obtains z =  2.22. (9) 

A geometric approach to critical dynamics has recently been 
proposed(lO. 11) which is based on the description of critical properties by 
Fortuin-Kasteleyn clusters. (~2) The assumption of stepwise growth and the 
contraction of these clusters links dynamic properties with static ones and 
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with the geometric properties of clusters. In a Flory-like approximation,  
the dynamic critical exponents z = 2.14 and z = 2.05 have been calculated in 
d =  2 and d =  3 dimensions, respectively. The critical dynamics has been 
studied by Monte Carlo simulations in various ways. In a simulation of 
large lattices up to 3603, the exponent A' of the nonlinear relaxation time 
was determined, leading to z=2.17_+0.06 via the relation A ' = A + / L  (13) 
Dynamic Monte Carlo renormalization group methods were used there- 
after. Their estimates of the critical exponent were z = 2.11__+ 0.03 (14~ 
(nonlinear relaxation time, maximum size L = 128) and z = 2.08 (4) (linear 
relaxation time, L =  16). Extension of the first work to extremely large 
lattices led to the lower but less precise value of z = 1 . 9 5 + 0 . 1 .  (15) The 
latest high-powered Monte Carlo works have measured the equilibrium 
dynamics at the critical point. A simulation on a special-purpose 
machine (16) was performed with an investment of 1.2 • 1014 single spin flips. 
An exponent z = 1.99-t-0.02 was calculated from lattice sizes L = 24, 40, 
and 64. Unfortunately, there is some suspicion that the random number  
generator is not as perfect as it should be. (17' 18) The method of damage 
spreading has been applied recently to heat-bath dynamics using lattice 
sizes up to 513, leading to z =  2.02-t-0.03. (19) The latest Monte Carlo work 
has invested about  5 x  1012 single spin updates. (2~ A critical exponent 
z = 2 . 0 4 + 0 . 0 3  was obtained from magnetization correlations and a 
compatible, but less precise value from energy correlations. 

It  is obviously not possible to draw a final conclusion about  the true 
dynamical exponent z of the three-dimensional Ising model with local 
dynamics. Although there appears to be a convergence to the RG estimate 
z = 2.02 in recent years, there are severe discrepancies among analytical as 
well as numerical results. In two dimensions, the dynamical exponent 
Z2D ----- 2.14 seemed to be "accepted" for a long time. A recent damage 
spreading study t2~) has led to the conclusion that the slowest modes relax 
with an exponent z larger than 2.27. Concluding, one may state that 
different methods, different observables, and different computing efforts 
have led to diverse results. Apart  from these technical aspects, a valid 
comparison of simulations and renormalization group results necessitates 
the inclusion of correction-to-scaling terms. This has not even been 
attempted in the past. Claimed error bars on estimates of z which take into 
account only statistical errors have to be viewed with caution. This will be 
demonstrated explicitly in this paper. 2 

2 During the revision of this paper, preliminary results of our analysis were published in a 
short form as ref. 22. These results shattered the consensus about the dynamic exponent z 
and motivated further investigations leading to z=2.10+0.04 (23) and z = 2 , 0 6 + 0 . 0 2 ,  t24) 
Large lattices up to 15363 have been simulated and the exponent z has been fitted from the 
nonequilibrium relaxation of the magnetization. 
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Here, we present the results of a large-scale simulation of the equi- 
librium dynamics of the three-dimensional Ising model. An investment of 
1.3 x 10 I3 single spin flips has been made and a thorough finite-size scaling 
analysis has been performed. In Section 2 we briefly describe the model, 
introduce the notation, and summarize technical details of the simulation. 
Monte Carlo estimators of correlation functions and power spectral 
densities are discussed in Section 3. Their statistical and systematic errors 
are calculated and compared to our data. In Section 4 we discuss the time 
and frequency dependences of the correlation function and of the power 
spectral density, respectively. A bulk region and a finite-size region must be 
distinguished for a proper determination of the asymptotic relaxation time. 
Section 5 contains a discussion of odd and even observables of the Ising 
model with emphasis on their qualitatively different behavior. Section 6 
treats the analysis of integrated and exponential relaxation times. The 
dynamical exponents z d and z i , t j  of exponential and integrated relaxation 
times are determined for three observables. We find good agreement of all 
estimates z~,  but a significant deviation from the renormalization group 
value for d = 3 dimensions. The influence of scaling corrections is discussed 
in view of this discrepancy. We find that the dynamical exponent zint,~, of 
the magnetization ~r and its absolute value [sr agrees surprisingly well 
with our exponent z. Energy correlations are more strongly influenced by 
short time scales, leading to a different exponent z~,t, g. As our third 
method of analysis, we investigate the scaling behavior of the correlation 
functions in Section 7. This method does not make any assumption about 
the time dependence, but simply collapses all data by the hypothesis of 
scaling. We find excellent scaling behavior and an exponent Zscal which 
agrees very well with z. Section 8 summarizes our results and gives an 
outlook to future work. 

2. NOTATIONS 

We investigate the three-dimensional Ising model on a simple cubic 
lattice defined by 

~ =  - J  ~ S~Sj-H~ Si (1) 
( q >  i 

where the sum is over all nearest neighbor pairs; a magnetic field H may 
couple to each spin S i = _+ 1; here we set H ~ 0. The coupling constant is 
J-= 1 henceforth, i.e., we measure temperatures in units of J/kB (kB is 
Boltzmann's constant). The Ising model shows a spontaneous symmetry 
breaking at its critical temperature Tc=4.51154.(25 27) The theoretical 
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understanding of the static critical properties is excellent; RG results (7) 
agree very well with high-temperature expansions (28) and with Monte 
Carlo results. (25-27) 

We define thermodynamic quantities such as the magnetization M and 
the energy E as densities, normalized to the number of spins in the system. 
The canonical ensemble average is denoted by 

( d )  =~ ~(~) ~4(~r (2) 

where 5:-- {S~} is a short-hand notation for the microstate of the system 
and d is an observable of the system (functional of the microstate 5:). 
Since we simulate finite lattices of size L a, the state space ~ = {~} is large 
(dim ~ =2Ld), but finite. The canonical probability distribution in (2) is 
defined by 

1 
~(5:) = ~ exp[ - fl~4e(5:) ] (3) 

where fl= 1/T and Z is the partition function. In order to distinguish 
properly between observables d which are random numbers and thermo- 
dynamic quantities A = ( s r  in (2) which are averages of observables, 
we use the script notation for observables. Thus, the observable of the 
magnetization is denoted as 

1 
~ = ~ S ,  (4) 

and the observable of the energy is 

1 
e = ~  <~> s,s: (5) 

In Monte Carlo simulations the canonical average is estimated by the time 
average over a finite Markov chain of microstates ~( t )  which obeys the 
master equation 

dPi 
dt = ~ [PJP:*- P*P*JJ (6) 

J 

We refer to .the standard literature about Markov chains (29-3~) and the 
Monte Carlo method ~32'33) for details concerning the conditions that have 
to be fulfilled by the transition matrix Po of (6) to ensure convergence of 
the probability vector P(~)-= P~ to the canonical probability ~(~) of (2). 

822/72/'3-4-25 
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In this paper we choose the Metropolis transition probability 

Po = Min{ 1, e x p [ - / / ( ~ . -  4 ) ]  } (7) 

to simulate local dynamics without conserved quantities. Here gi and g: are 
the energy observables of the initial state ~ and of the new microstate ~ ,  
respectively. The probability (7) is compared to a random number. We use 
the Kirkpatrick-Stoll random number generator (34/ with the trinomial 
(p=250 ,  q =  147) and a careful initialization procedure. The dynamics 
defined by Eqs. (6) and (7) can be written in short-hand notation as 

dP 
- - = ~ P  (8) 
dt 

where 5~ is the Liouville operator. 
The definition ofpu  in (7) has to be supplemented by the prescription 

for how to move through the lattice and change spins. As usual in 
vectorized algorithms, the whole lattice is divided into two interpenetrating 
sublattices and the spins are changed sequentially in each sublattice. We 
use periodic-helical boundary conditions for favorable veetorization. It is 
generally assumed that the type of dynamics (Metropolis, Glauber, heat- 
bath) as well as the boundary conditions and the way one moves through 
the lattice belong to the irrelevant properties of the model. However, the 
absolute values of relaxation times and the magnitude of finite-size 
corrections may depend on these details. 

The time average of an observable d over the discrete time series 
{ d ( t ) }  is denoted by an overbar, 

�9 d ( i )  (9)  

to distinguish it from the canonical average ( d )  of (2) to be estimated. 
We thermalize the system over long periods with no>~20%xp, ~ Monte 
Carlo steps per spin (3~) to achieve thermal equilibrium. This has been 
checked after the first approximate values of %xp,~ have been calculated 
from preliminary rums. Summations over time series are understood to 
exclude the thermalization. The actual run lengths for the calculation of 
time averages vary between 106 and 3 x 106 MCS/spin, depending on the 
lattice size. We perform several runs with different random number 
streams. The details of the simulation of each lattice size L are summarized 
in Table I. We point out that the distribution of statistical weight g(L) 
corresponds to a nearly optimal distribution in the sense of ref. 35. 3 

3 Numerical data obtained by extensive and "expensive" simulations should be made available 
to others. If the reader wishes to apply his or her own techniques of data analysis, the author 
offers to distribute his raw data by e-mail. 
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Table I. Distribution of Computing Time on Lattice Size L ~ 

795 

L nru n nup d �9 10 -6 nto t . 10 _6 me .  10 -3 m e - 10 -3 

20 8 0.78 6.2 115 176 
26 12 1.08 13.0 137 222 
30 6 2.7 16.2 129 215 
36 14 1.57 22.0 118 205 
40 9 2.7 24.3 t05 180 
46 8 2.7 21.6 70 126 
50 7 2.7 18.9 51 91 
60 8 2.7 22.0 41 75 

a nrun is the number of different runs, each with the number nup d of lattice updates given in 
the third column. The fourth column, nto~, is the total amount of lattice updates invested on 
lattice size L. Here m~ and m e are the numbers of effectively uncorrelated observables, 
according to Eq. (18), using our estimates "gi,t,~ in Table III. 

The M a r k o v  process  defined by Eqs. (6) and  (7) is a process  in the 

state space ~ of  micros ta tes  5 ~. Each observable  d is a funct ional  of  J 
and  projects  dynamica l  proper t ies  of  the system into the space of macro -  
scopic observables .  In  the language  of t ime-series analysis,  (36~ the series 
~r itself is cal led a s t a t iona ry  s tochast ic  process.  Its dynamica l  proper t ies  
are descr ibed by the au toco r re l a t i on  funct ion 

~ , ( t )  = ( d ( s  + t) d ( s ) )  - ( ~ 4 )  2 (10) 

which depends  only on the t ime difference t because of s ta t ionar i ty .  We  
shall  be main ly  concerned  with the normal ized  au tocor re l a t ion  function 

defined as 

"c-  O~(t) (11) 

U n d e r  the usual  condi t ions  a d o p t e d  above  which ensure that  the canonical  
d i s t r ibu t ion  is the unique s t a t iona ry  d is t r ibut ion ,  one can write the au to-  
cor re la t ion  funct ion qs~( t )  in a spectral  form (37) as 

1 

~ ( t ) = f  2 t'p dtS~,(2) (!  2) 
- - 1  

The measure  d /~ , (2 )  depends  explici t ly on the observable  ~4. Wi th  the 
res t r ic t ion to the usual  case where only posi t ive eigenvalues 2 are re levant  
for dynamic  cri t ical  behavior ,  we can write Eq. (12) as an integral  over  all 
r e laxa t ion  t imes weighted with the measure  p ~ ( r )  as 

fo ~Le(t)  = e x p ( -  I t l /~ )  d p ~ ( ~ )  (13) 
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In this sense, each observable has its characteristic distribution p~(z) of 
relaxation times ~, which are related to the eigenvalues 2 of ~ in (8) by 
~ - 1 =  - l o g  121. If the state space ~ is finite, then the measure ~3~(2) is 
supported on the interval [ - 2 " ,  +2*]  with 2 * <  1. (37) In this case, the 
largest relaxation time is finite. If the state space ~ is infinite, then 2* may 
reach 2* = 1, leading to the divergence of the largest relaxation time of the 
system. This situation is found at the critical point" of the infinite system. 
Stationarity breaks down at this point. 

Since the RG approach to dynamics (2) applies to asymptotically long 
times only, a comparison of simulation and theory concentrates on the 
exponential relaxation time 

t 
'~exp, d = lim sup (14) 

Its scaling behavior with respect to lattice size L is described by the 
exponent z as 

%xp(8, L) = LZvexp, o(Ll/Vs) (15) 

Here 8= IT~To-1l is the reduced temperature distance to the critical 
temperature. 

In our Monte Carlo simulation, we analyze the three observables Jr 
]~[ ,  and g. The purpose of studying several observables becomes evident 
from Eq. (13). It is reasonable to assume that all observables have a non- 
vanishing overlap p,,(2*) with the slowest mode (the contrary would 
assume exact orthogonality). But the one or other observable has signifi- 
cant measure pal(2) also for 2 < 2", so that asymptotically one-exponential 
behavior is reached in different time ranges for different observables d .  In 
fact, it is the main difficulty of the analysis to identify this one-exponential 
region. According to the dynamic universality, it is expected that all 
observables have the same exponential relaxation time %xp.~,. This 
expectation has to be tested by simulations. 

A different measure of the dynamical behavior inherent in the auto- 
correlation function (11) is the integrated relaxation time 

Tint,.~ = �89 ~ ( ~ ( g )  (16) 
t-- --c~ 

which is a measure of all time scales that contribute to the relaxation of d .  
Obviously, integrated relaxation times ~int, d are smaller than exponential 
times %xp,.4. Moreover, ~int,_~ is in general different for each observable .~r 
Surprisingly, there is no accurate numerical comparison of exponential and 
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integrated times so far for the three-dimensional Ising model. Since 
integrated relaxation times measure the decay of correlations in an 
integrated way, they are relevant for the calculation of the statistical errors 
of Monte Carlo estimates (9). The variance of a Monte Carlo estimate (9) 
based on n correlated values is (32' 33) 

/7 

v a r ( ~ )  = ; .~ ~d( i - j )~-~(O)  (17) 
t~J 

where 

n 
m = (18) 

2~ int ,  ~ '  

is the number of effectively uncorrelated ~4-data of the time series. The 
determination of r~.t,~ is necessary in every Monte Carlo simulation to 
calculate the statistical errors of estimates. 

Whereas dynamical finite-size scaling of %xp,,~ in (15) is a result of the 
RG, (38"39) there is no similar result for integrated relaxation times. In fact, 
there is no theoretical idea of whether the next-to-leading relaxation times 

< rexp scale and if they do, how their exponent z~ differs from the 
asymptotic exponent z. In principle, one may conjecture the same power 
law behavior for integrated relaxation times 

Vint,~ -'-=Bint, .~' LZi""~ (19) 

with an exponent zint, o~, valid for large enough L so that scaling corrections 
which affect %xp,~, as well as ~int, d are unmeasurably small. The exponent 
zint, d depends on the scaling behavior of all time scales r of (13) and on 
the generally L-dependent overlap of the observable with all modes of the 
dynamics. Apart from exceptional cases which allow for an exact solution 
of the dynamics, (33) we have no knowledge of "tint, s t  and its scaling 
behavior. Nevertheless, the determination of "tint. ~, for many observables ~r 
yields valuable information about the dynamics. 

We complete our summary of notations with the power spectral 
density P~,(e)). It is a favorable quantity to identify the long-time or low- 
frequency behavior of correlations. P~(e~) is the Fourier transform (36) 

P ~,(co) = ~ ~b~c(t) exp( - icot) dt 
- - o o  

[ 1' = lim 1 1 I r d ( t )  exp( - i~o t )d t  (20) 
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of the autocorrelation function ~b~,(t). It contains exactly the same informa- 
tion as r but the sampling properties of both quantities are very 
different, as we discuss in Section 3 and in the Appendix in connection with 
the Monte Carlo estimators of ~b~(t) and Pal(co). Comparison with 
Eq. (16) shows that the integrated relaxation time is simply related to the 
normalized power spectral density 

po,.~(e)) = Pd(e)) (21) 
r 

by Po,~,(co = O) = "~int, d / / I L  

3. E S T I M A T I O N  OF A U T O C O R R E L A T I O N  FUNCTIONS A N D  
POWER SPECTRAL DENSITIES 

The estimation of thermodynamic quantities by averages over finite 
time series (9) has been well known from the beginning of Monte Carlo 
simulations. The calculation of their errors 6~7= (var ~7)1/2 necessitates the 
knowledge of time-dependent properties such as correlation functions (10) 
which are not easily estimated from a single time series. The estimation of 
time-dependent quantities has been solved in the theory of time series 
analysis. (36) Sokal and co-workers (33'37) have summarized the essential 
results of this theory for application in Monte Carlo simulations. They 
have thoroughly discussed the estimation of correlation functions ~bd(t), 
their variances, and the determination of the integrated relaxation times Tin t . 
We extend their discussion to the estimation of frequency-dependent quan- 
tities such as the power spectral density P~(~o) of (20). This estimation 
problem is treated in the second part of this section. 

The estimation of correlation functions from a single time series relies 
on the assumption that the statistical properties of the process d ( t )  do not 
change over time. We assume that d( t )  is stationary up to second order. 
Since we neglect fourth-order cumulants, (36) higher-order stationarity is not 
required. A natural estimator of the correlation function ~b~,(t) of (10) is 
given by the sum over the time series 

~,,(t) - (d~ -/~d)(d~_ ,-- #~) (22) 
n - I t [  ,=,+1 

where # ~ , - - - ( d )  is the exact mean. In some cases, #.~r is known from 
symmetry considerations, e.g., the mean /~ t  of the magnetization vanishes 
in the symmetric phase. If it is unknown, the estimator 

~d( t )= n 1 ~] (d,--s~7)(sr (23) 
- I t l  s= ,+ l  
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is appropriate, where ~d is the estimated mean, Eq. (9). It has been shown 
in the theory of time series ~36) that r  of (22) is an unbiased estimator of 
~b~, whereas ~bo~ of (23) is only asymptotic@y unbiased (i.e., in the limit 
n ~ oo). A typical example of our estimates ~x.~r, q~ ,  and ~ is depicted 
in Fig. 1. For further discussion of modified estimators we refer to the 
standard literature. (36) 

The bias of ~b~, in (23) in a finite time series with n steps results from 
the deviation of ~ f r o m / ~ .  For large n it is given by 

~ 2Zint, .~ Cd(t)  = [~b ~( t ) ]  + [ ( ~ 7 -  # d )  2] = [~bd(t)] + ~bd(O ) (24) 
n 

where the brackets [ - ]  denote the average over the ensemble of n-step time 
series. Obviously, fluctuation estimators could be corrected for bias by (24) 
if necessary. However, the bias is an effect of order l/n, whereas the 
statistical errors to be discussed below are of the order 1/.,/-n, so that the 
bias can be neglected. 

We shall mainly discuss the normalized correlation function ~bo~(t) of 
(11 ), which is estimated by the ratio 

q ~ ( t )  - = ~ ' ( t )  (25) 

0 

o-i 
oO 1000 2000 3000 4000 5000 6000 

t (Mcs) 

Fig. 1. Correlation function estimates ~ r  ~l~l, and ~ of 503 lattices calculated from 
19 x 106 lattice updates. The straight lines are one-exponential fits in the asymptotic range (see 
Table III). 
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of estimators q~,(t) and ~ ( t ) ,  respectively. The sampling properties of the 
sample autocorrelation function q3 ,(t) are more complicated because ~ r  
is a ratio of correlated random variables. It is a fundamental result due to 
Bartlett (4~ that the covariance of q3d(t) is given by 

+ t ' ))  

ns=_oo 

+ ~ , ( s  + t + t') @~,(s - t) + 2@~,(t) ~ r  + t') ~P~(s) 

- 2@d(t ) @d(s) @ ~ ( s -  t -  t') - 2@ ~,(t + t') q~,(s) ~2~,(s- t)) (26) 

neglecting the fourth-order cumulants. (36) Since we are interested in 
correlation functions of asymptotically exponential type, we conveniently 
assume @ d ( t ) ~  e x p ( - t / ~ , )  and ~ >> 1. This ignores the next-to-leading 
time scales, (37) an assumption which is reasonable in view of the long-time 
behavior of correlation functions (Fig. 1). For t, t + t' > 0, we then obtain 
from Eq. (26) 

+ t '))  

~'Cde(-I"l/~d) 1+ II  e ~-2'/*~) 1+  (27) 

This result shows that the variance and covariance of r respectively, 
depend on the relaxation time z d in the same way as the variance of 
ordinary static properties, such as mean values s ]  and fluctuations ~-7. It 
is the same number m=n/2rd, Eq. (18), of effectively uncorrelated 
measurements that determines the errors of all estimators. To be precise, 
the variance var(qSd(t)) in (27) increases from var(43~(0))= 0 to z~,/n for 
long times. Because of the normalization q3~(t = 0 ) =  1 of the estimates, 
this behavior differs from that of the variance var(q~(t)) = cov(r q~(t)) of 
the unnormalized correlation function ~bd(t ) given by Beretti and Sokal. ~37~ 

The covariance is dominated by the leading exponential term in (27). 
It shows that cov(q3~(t), 43,( t  + t')) decreases with the same time scale ~ 
as the correlation function itself. Consequently, there is a fairly high 
correlation between neighboring points of the series {~fio4(t)} leading to 
smooth sequences of correlation data. The ratio 

cov(  ,it), + t')) ( - I t ' l l  
var(q3o~(t)) ~ exp \ L ~ /  (28) 
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is a measure of the smoothness of the data sequence. It is independent of 
the precision of the data. Thus, statistically good and bad data cannot be 
distinguished from the visual impression of the data. It is indispensable to 
calculate their variances explicitly. One should be aware of the high 
covariance when one tries to identify systematic deviations of measured 
correlation data from their expected time dependence. The high covariance 
may lead to misinterpretations in this case. 

We have compared the calculated error 6~o~ = (var q~d) 1/2 following 
from (27) with the measured errors. The latter have been estimated from an 
ensemble of records each with a fixed number of time steps. The errors in 
Table II refer to the point ~ - ~ 0 . 1  and have been calculated for 
and [Jc'f. The agreement is satisfactory and indicates that the assumptions 
leading to (27) are roughly fulfilled. The comparison of the errors of qsi~ j 
and of ~ show that the former is a factor 2.5 smaller. According to (27), 
this follows from the ratio r~'/vl~J -~ 6, which is a result of our simulation 
(see Section 6). The dependences of the relative error ~5~r~l/qSl~l on time 
and ~b, respectively, are depicted in Fig. 2. They are well described by our 
result (27). 

The estimation of the power spectral density Pal(co) of (20) is less 
straightforward. It appears natural to estimate P~d(co) by its sample version 
a s  

I.(co) = 2 (0) + 2 ~ d(t) cos cot 
t = l  

2 s~'(t) cos cot + s~'(t) sin cot (29) 
F/ t = l  t ~ l  

Table II. Comparison of Estimated and Calculated Errors of O u r  F ina l  

Correlation Function Estimates ~lJ~ and ~ after Averaging over Al l  D a t a  ~ 

L 6C~l.~r ( ~ , 0 . 1 )  gJr 6q~ ( q ~ O . 1 )  6~.~,c 

20 1 . 4 x  10 -3  2.1 • 10 . 3  3 . 0 x  10 -3  5 . 4 x  i0  -~ 

26 1.9 x 10 -3  1.9 x 10 -3  7.2 x 10 3 4.9 • 10 -3  

30 2.5 • 10 -3  2.0 x 10 3 9.4 x 10 -3  5.2 • 10 -3  

36 2 . 1 x 1 0  -3  2 . 1 x 1 0  3 4 . 6 x 1 0  3 5 . 3 x 1 0  -3  

40 1.6 x 10 3 2.2 x 10 3 4.3 x I 0 - 3  5.7 x 1 0 - 3  

46 2 . 0 x  10 -3  2.8 x 10 -3  7.1 x 10 3 6.8 x 1 0 - 3  

50 1..7x 10 -3  3 . 2 x  10 -3  5 . 2 x  10 -3  8.1 x 10 -3  

60 3 . 7 x 1 0  -3  3 . 6 x 1 0  3 7 . 2 x l 0  3 8 . 9 x 1 0 - 3  

a T h e  values  c o r r e s p o n d  to c o r r e l a t i o n  func t ion  es t ima tes  ~ 0 . 1 .  The re  is a fair ly  g o o d  

a g r e e m e n t  be tween  e s t ima ted  ( c o l u m n s  2 a n d  4) a n d  ca l cu l a t ed  ( c o l u m n s  3 a n d  5) e r rors .  

The  ensembles  (Table  I) a re  smal l ,  so t ha t  the  e r r o r  es t imates  a re  very rough .  
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Fig. 2. Relative errors of estimates of the correlation function q5 L,~t~ and of the power  spectral 
density /31~tl determined from single simulations of 463 lattices (Table I). The errors are in 
good accord with Eqs. (27) and (A13), respectively. Similar error  dependences have been 
obtained for all lattices. Notice that large values of P correspond to small frequencies co. In 
this limit we have chosen a large window parameter  n o ~- 1000 for a better resolution of the 
smoo th  crossover to the finite-size limit described by Eq. (44). The mean square errors  are 
larger then, as described by Eq. (A13). 

which is called the periodogram336) Comparison with (20) shows that 
In(co) has to be a ,multiplied by a factor 1/4re to be an estimator of P(co). 
The function 

1 
f*(co) = U~ I.(co) (3o) 

is called the sample  spectra l  densi ty  function. I t  is defined on the s t anda rd  
grid 

co = C~p = p = O ,  1 ..... (31) 
n 

The sampling properties of l*(co) are extremely bad: It is an unbiased, but 
not a consistent estimator of the power spectral density P(o)). (36) This 
means that it does not converge to P(co) in mean square. In fact, its 
variance var(i*(co)) is of O(1) even for n--*oo and the covariance 
cov(i*(r i*(o92) ) decreases for n--* oo, leading to a wildly fluctuating 
i*(co). The bad statistical behavior of the periodogram is an instructive 
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example that a natural estimator may be statistically useless. This 
phenomenon has been studied in the theory of time series analysis, ~36) and 
other estimators for P(co) which are consistent and asymptotically unbiased 
have been provided. The problem has been discussed by Madras and 
Sokal (33) and by Wolff ~41) in conjunction with the estimation of integrated 
relaxation times ~int.~, 

In our work we make use of the Daniell or rectangular window 
[Appendix, Eq. (A10)] to obtain a smoothed estimator (see Appendix). 
This choice is motivated by practical reasons: we simulate 64 lattices with 
different relaxation times in a single run each with several million data for 
each observable. This necessitates a fast and easy implementation. The 
Daniell window parameter no of Eq. (A10) is chosen near its optimum 
value (A15) to minimize the total error of the estimate/3n(co ) of Eq. (A3). 
The optimum value of no depends on n and on the normalized curvature 
P"(co)/P(co). Instead of calculating optimal values no(CO) for each frequency, 
we conveniently choose a larger than optimal value in the low-frequency 
limit CO< O(1/2z) to obtain a better frequency resolution and a smaller 
value in the high-frequency limit [CO > O(1/2z)]. We point out that our 
final data are averaged over small ensembles of independent runs of record 
length nup a (Table I) each of which is analyzed separately. Finally, we per- 
form an average of Pn(CO) [as well as ~( t ) ]  over all runs. This procedure, 
which is demanded by the maximum vector length on our computer, is less 
optimal than the analysis of an equivalent single run, since the bias, 
Eq. (A6), is slightly larger in this case. To compensate for that, it is 
advisable to choose the window parameter no according to the total record 
length of all runs. These considerations show that part of a proper data 
analysis has to be done in the planning phase of a simulation to make the 
most of the available data. 

As an example of our analysis, Fig. 2 compares the relative errors of 
the estimates/31~l(CO ) of the power spectral density to those of the correla- 
tion function Osi,gt(t ). Both data sets are calculated from the same time 
series. It is obvious that the estimation of the power spectral density is 
better by two orders of magnitude compared to the correlation function in 
the interesting long-time (low-frequency) limit. Typical relative errors of 
the estimator/3(o)) of Eq. (A3) are in the range 

~P.(CO) 
/3 (co) - 5 x 10-3-10-2 (32) 

depending on the total amount of data. Comparison with the relative error 
of q3 ,(t), Eq. (27), shows that the power spectral density P(co) is well 
suited to investigate the long-time behavior of Monte Carlo time series. 
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It will be useful in order to identify the asymptotic time range of 
one-exponential decay. This is necessary for a proper determination of 
exponential relaxation times. 

4. SCALING PROPERTIES OF THE CORRELATION FUNCTION 
AND THE POWER SPECTRAL DENSITY 

The time and frequency dependences of 45d(t) and P~(~o), respec- 
tively, are largely unknown. Knowledge of them is equivalent to complete 
information about the  spectrum (13) of the Liouville operator in the limit 
of infinite state space 2. In fact, the RG approaches (38'39) extract the 
dynamical exponent z from the scaling of the largest time scale, but they 
do not yield any information about next-to-leading time scales and their 
scaling behavior. 

In Monte Carlo simulations we are concerned with a finite system. 
The largest eigenvalue )~* (Section 2) yields the (finite) exponential relaxa- 
tion time %xp,~,, which is the largest time scale of the system unless the 
observable d is accidentally orthogonal to the slowest mode. The Monte 
Carlo analysis which aims at the calculation of z in (15) is confronted with 
the severe problem to extract the exponential time scale from correlation 
function estimates without much information about the true time 
dependence of ~(t). We know that there is a largest (exponential) relaxa- 
tion time, but we do not know the exponential time region where this time 
scale dominates. Strictly speaking, the problem is ill posed as long as we do 
not know an upper bound of the exponential relaxation time of the finite 
system. 

The extraction of ~exp,~, from equilibrium correlation data has been 
done in a rather pragmatic way in the past. The large-scale simulation by 
Pearson et al. (16) was analyzed by applying the definition of ~exp,~, in (14) 
in a direct way. The authors simply observed a leveling off of the local 
derivatives of ~d( t ) .  It is clear that this method suffers from the same 
concurrence of bias (due to estimate of the derivative at finite time) and 
variance (due to increasing variance with time) as the determination of 
the integrated relaxation time. (33' 41) Pearson et aI. ~ did not give a quan- 
titative criterion for the exponential time region they assumed for their final 
estimate of %• A recent simulation by Wansleben and Landau (2~ was 
analyzed in a completely different way. In order to utilize the correlation 
data for all times--being aware that the smaller times have smaller 
errors--the authors fitted their correlation data to a two- and three- 
exponential ansatz. But it is by no means clear that the replacement of a 
large number of exponentials (2125~176176 ~ 10 38ooo for a 50 3 system) by two or 
three exponentials Should yield a sensible description. Instead it is well 
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known that in the short-time region the exponentials add up to an 
algebraic decay of correlations (42l as in the infinite system. 

It appears reasonable to summarize some facts about correlation 
functions and power spectral densities in the critical region which are 
easily verified by our data. The dynamic scaling hypothesis (2~ of the 
low-frequency behavior of the power spectral density Pod(co) of (20) is 
readily extended to finite systems by (42) 

P~(co, L)=b2-~+'~-dP (bZco b 1L)=L2 "+~ aP~o(ogL ~) (33) zar ~ 

Notice that the scaling of P ~  contains an additional factor b-a. This is due 
to the fact that fluctuations of densities like ~ ( t )  and their Fourier trans- 
form P~(co) have to be multiplied by the volume L a to obtain the usual 
scaling in the thermodynamic limit. Figure 3 shows an example of the 
scaling of bill(co, L) resulting from our simulation. 

By Fourier transformation (20), Eq. (33) is equivalent to the scaling 
form 

d - - z  ~ d ( t , L ) = b 2 - ~ - a ~ ( b - ~ t , b - l L ) = L  2-"-  (~d,o(tL ) (34) 

of the correlation function ~b.~,(t), Eq. (10). Both scaling forms have been 
shown to be valid in the long-time or low-frequency limit by the dynamic 
RG. (2) However, the onset of scaling with respect to time t or frequency e) 

]~ML (7/~+z-d) 
7 

10 21~o. 

10 3 

7 

1 0  -4 

10 5 

10 - 6  T 

10 ~L ~ 10 2 10 3 

Fig. 3. Estimates P(e)) of the power spectral density plotted in scaling form using the 
theoretical value 7/v= 1.97 and our result z=2.09 for the dynamic exponent. In the 
asymptotic range, the form is Lorentzian, Eq. (44) (solid curve); for large frequencies, we find 
bulk behavior described by Eq. (35) (dashed curve). 
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is as unknown as the critical region itself and the scaling region of system 
size L. The RG does not provide information about these nonuniversal 
features of the dynamics. 

It has been pointed out by Angles d'Auriac et  al. (42) that the power 
spectral density (20) diverges algebraically, 

L a P  ~ ( m ,  L )  ~ a~ - ~  (35) 

with the exponents 

yz 

# e = l + - -  
VZ 

(36)  

in the large-frequency limit co>~Zexp ~ (bulk range of the finite system). 
In this frequency range, the finite system behaves like the infinite system. 
The power-law behavior (35) is characteristic for self-similar processes, 
as Kolmogorov showed very early. (43) In the bulk range, the processes 
Jg(t) and g(t) are fractal Brownian processes with a fractal dimension 
D = ( 5 -  #)/2. We have verified this behavior in Fig. 4 by means of the 
structure function ~( t )=  I d ( t ' +  t ) - d ( t ' ) l  2, which obeys the power law 

i 
~ lOO 1000 

t (Mcs) 

Fig. 4. The structure function 7s(t) defined in Section 4, showing power law behavior for 
short times. We find #~a ~- #lutl - 1.92, in good accord with the expected value 1.94 using our 
result z =  2.09. For the energy structure function gse(t ) we fit the data with an exponent 
/~e = 1.28, which is much larger than the expected value 1.08. This discrepancy originates from 
short relaxation times which scale in a different way than the exponential time Zexp.e" 
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~ ( t ) ~ t  ~d-1 in the bulk range. (43) However, the time window for bulk 
behavior (35) is too small to f i t /~d and z, respectively, to high accuracy 
(Fig. 4). The crossover from the bulk from (35) to the finite-size asymptotic 
(39) and (38) to be discussed below leads to considerable curvature, so that 
the value of z depends on the time interval of the fit (Fig. 4). By the 
relation ~u~, ( t )=2[q~(O)-~o~( t ) ] ,  it is shown that the normalized 
correlation function ~bo~,(t) of (11) has an algebraic time dependence, (43~ 

~ ~ ( t )  = 1 - c L - 7 / v t ~ -  1 (37) 

in the bulk region t ~ r~xp. It is equivalent to the power law behavior of 
~(t) verified above. 

We now turn to the asymptotic time range of finite systems and 
propose a method to determine Zexp in a systematic way (we leave out the 
subscript ~r for the observable to lighten the notation henceforth). As we 
have discussed in Section 3, the estimator of the power spectral density is 
much better suited to analyzing the long-time behavior of a process than 
the estimator of the correlation function. However, there is a slight disad- 
vantage in using P(co) in the region of small e). This is due to the fact that 
the power spectral density P(co) is an integral over the whole spectrum p(r) 
of relaxation times, which has maximum weight at rexp and a tail toward 
smaller relaxation times. 

In order to discuss the frequency dependence of P(co) we assume for 
the moment a simple one-exponential behavior 

( b ~ , ( t , L ) = C e x p ( - t / Z ~ x p )  with Z e x p = A L  ~ (38) 

valid for all times. The amplitude scales as C ~ L  2 - " - a  according to 
Eq. (34). The power spectral density Pg(o)) of (20) corresponding to a 
one-exponential qb(t), Eq. (38), has the Lorentzian form and scales as 

p ( ~ o , L ) _ C  r~xp =L2__~+~_a 1 A (39) 
rc 1 + (D2"C2xp ~ 1 + A2(09LZ) 2 

It is obvious from Fig. 3 that PIdtl(~o, L) deviates from the Lorentzian form 
(39) for large frequencies (bulk range) as discussed above. 

The tail of the spectrum, which we have ignored in (38) and (39), 
leads to a modification of the simple Lorentzian form (39). With Eqs. (13) 
and (20), one obtains an expansion of the normalized power spectral 
density Po(~O) of (21) in terms of moments of the spectrum ~: 

If Texp + 27 / 
eo((.o ) = /o(T') 1-1- (D2(Texp + T') 2 dE/ (40)  
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Here, IS(T')=p(rex p + T') is nonzero only for T' <0. We expand Po(e)) in 
(40) in powers of co2: 

P0(o) = p<o~ + P(02)o92 + 0((2.) 4 ) (41) 

The first term is the integrated relaxation time "Cint/~ ~---P(o ~ Eq. (16). Thus, 
the first moment of the distribution ~ of relaxation times is the difference 
of integrated and exponential relaxation times: 

f p(Tt)"r5 ' dT'  = tin t - -  Z'ex p (42) 

The second-order term is given by 

Tin t -- Tex p 
P ( ~  1--T37T exp ( 1 + 3  r-~-x~ ) (43) 

neglecting the second and higher moments of /5 compared to the first 
moment. This is motivated by the expectation that the tail of the spectrum 
drops rather sharply, so that the relative difference of Tint and Texp contains 
the leading correction of the simple one-exponential behavior. This 
assumption imposes a restriction to the applicability of our method: 
processes with broad or complicated spectra will not be treated adequately 
in this simplified way, which neglects higher moments of the spectrum r 
Improving the method would necessitate the calculation of higher moments 
of t5 from the data. 

Introducing the ratio C=L2-q-d72int/TJexp, we can write Eq. (41) 
similar to the simple Lorentz form (39), taking into account the leading 
corrections of nonexponential time scales: 

P(og) - C Tex p + 0 ( o  4) (44)  
1 + ~2"re2xp k(C ) 

with k(C)= [1 + 3 ( C - 1 ) ] / C .  This approximation of the low-frequency 
behavior of the power spectral density is the starting point of our analysis: 
we first calculate the integrated relaxation time Zint from our estimates of 
the correlation function. This will be done in Section 6 by well-known 
methods. <33'41) Then we estimate the exponential relaxation time Zexp by 
fitting our correlation function estimates to a simple exponential decay in 
a preliminary long time interval where we hope to be in the asymptotic 
limit (being aware that we cannot prove it). With these values of Texp and 
Tint we calculate the power spectral density P(co) in the approximation (44). 
Since our values of/5(~o) are much more accurate than those of @t), we 
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can neatly observe the onset of deviations of our measured/3 data from the 
calculated curve (see Fig. 3). The frequency ~oc and time tc = 2~r/~oc, respec- 
tively, where the deviation exceeds the error of/3(m) are the limits of the 
asymptotic time range. In this asymptotic time range we fit our correlation 
data to a simple exponential and arrive at our final estimates for v~xp. 

5. O D D  A N D  EVEN O B S E R V A B L E S  

Before we present the quantitative results obtained by this method, we 
discuss the different dynamical behavior of odd and even observables. We 
pointed out in Section 2 that it is reasonable to study several observables 
because of their different overlap with the slowest mode of the system. The 
symmetry of an observable is of great importance in this respect. The Ising 
model at zero magnetic field is invariant under global spin flips and the 
dynamics commutes with this global spin flip. Thus, the eigenvectors of the 
Liouville operator are also eigenvectors of the inversion operator with 
eigenvalues • 1. The dynamical time evolution of odd and even observables 
is separated into an odd and an even subspace, respectively. 

The static critical behavior is dominated by a single length scale 4, the 
correlation length, if hyperscaling is valid. The divergence of magnetic and 
energetic properties is described by this length scale. Dynamic critical 
phenomena are expected to be similarly characterized by a single time scale 
V~xp, independent of the observable under consideration. This is expected in 
the asymptotic limit of large system sizes and long times. 

In finite lattices no true symmetry breaking can occur. The dynamical 
consequence is a lack of ergodicity breaking. This is an annoying feature in 
Monte Carlo simulations, where one observes the system jumping from 
positive to negative values of J~, Eq. (4), in the ordered phase T< Tc of 
the infinite system. This behavior has already been described. (44) Here, we 
emphasize the fact that this behavior of finite lattices persists at the critical 
temperature Tc of the infinite system where finite-size simulations are 
performed. 

It is necessary to distinguish three different regimes (Fig. 5): (I) the 
high-temperature, infinite-volume limit (L ~ ~ )  at fixed T> T,.; (II) the 
low-temperature, infinite-volume limit at fixed T< T~; (III) the finite-size 
scaling regime, which has a bulk (4 "~ L) and a finite-size (4 > L) limit. In 
the scaling regime III the exponential relaxation time is described by 
~(~, L)  = ~zf(~/L) or equivalently by r = LZg(~/L). 

The sign fluctuations of odd observables in finite lattices lead to very dif- 
ferent relaxation times of odd and even observables in the low-temperature 
regime II and in the interval T< T C of the scaling regime III. While 
~xp . . . . .  = O(1) in II, the relaxation time %xp. odd of odd observables increases 

822/72/3-4-26 
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Tr 

T< T,. 

I 

exponentially with lattice size L as ~exp, odd ~ exp[a(T) Ld- 1].(39,45) It is 
strictly infinite in the thermodynamic limit L--+ oo for all T~< To. The 
origin of this behavior is the creation of domain walls in finite systems 
whose activated movement leads to sign changes. At low temperatures in 
regime II, these sign flips do not occur within reasonable Monte Carlo 
simulation times; one observes fluctuations with short correlations in one 
phase only~ With increasing temperature but still T<  Tc, one enters a 
subtle region (Fig. 6a): the event of sign flip occurs more frequently and the 
time average (9) of odd observables d drops from ~7"~A to sJ~-0  
although the infinite system is still deeply in the ordered phase. Conse- 
quently, the dynamical behavior which is measured by the estimator r of 
(23) for low temperatures has to be estimated by q~ of (22). Figure 6 shows 
that processes d(t )  of odd observables possess two time scales which 
describe different phenomena: the longer time scale originates from fluctua- 
tions of the sign of d ,  the shorter from fluctuations of the absolute value 
Idl. This feature extends up to temperatures slightly above Tc. 

We have analyzed this mixed process at the critical temperature Tc of 
the infinite system by splitting the odd observable JC/(t) into its sign, 
sign(~)(t),  and its absolute value 1~/1 ( t ) .The appropriate correlation 
function estimators q~(t), ~sign(~t,)(t), a n d  ~bh~q(t ) in Fig. 7 confirm the 
qualitative impression of Fig. 6: Comparising ~bsign(.g ) with ~ ( t )  shows 
clearly that the dominant contribution to the dynamical behavior of 
odd observables is the fluctuation of the sign. We find that in the three- 
dimensional Ising model the exponential relaxation time Zexp, odd of odd 

Fig. 5. Schematic plot of the exponential relaxation times V,xp of odd and even observables 
of a finite system. The dashed lines roughly separate the regions I and II from the scaling 
region III. The dotted lines separate the bulk range of simulations ~ ~ L from the finite-size 
range ~ >> L. 
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(b) 
Fig. 6. (a) A record of the observable ~ ' ( t )  of a 603 system at the critical temperature 
T~,=4.51154 of the infinite system. Fluctuations of the sign of ~g dominate the long-time 
behavior of ~ l  (Fig. 7). (b) Part of the J~(t) record with a higher resolution. It is evident 
that fluctuations of J l ( t )  are composed of fluctuations of the sign and the magnitude with 
distinctly different time scales. 

observables is about a factor six larger than rexv . . . . .  at the critical 
temperature. This nontrivial ratio 

%ad/z . . . .  = f ( L / ~ )  (45) 

depends on the double-welled free energy functional of finite lattices at T c. 
It is expected that f ( L / ~ )  is a universal scaling function in the finite-size 
scaling regime III, depending only on the universality class of the system. 
Universality is not expected in the low-temperature regime I and that part 
of the scaling regime III where the exponential L dependence crosses over 
to the power-law behavior Toad ~ L z- We have also performed simulations 
in the bulk limit of the scaling regime III above T~ and we find that the 
scaling function f ( L / ~ )  of (45) smoothly approaches f(oo ) ~_ 2. 
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Fig. 7. Correlation function estimates of q~r t~l,gl, and qSsign(.ar The exponential time 
scales Vexp,~ and Zexp, sign~) are identical. The exponential relaxation time of even observables 
like [d/I is about a factor six shorter. 

6. I N T E G R A T E D  A N D  E X P O N E N T I A L  RELAXATION T I M E S  

The estimation of integrated relaxation times from correlation function 
estimates is performed in the way discussed by Madras  and Sokal (33) and 
WolffJ 41) Both schemes cut off the time integral and sum [Eq. (16)], 
respectively, at some window parameter  no: 

n o -- 1 
1 

Tin t ~--- ~ 2 t- ~ q3(t) 2 ( t )  + R ( n o )  ( 4 6 )  
t = l  

Madras  and Sokal (33) omit the residual term R(no), which leads to a bias 

b('~im)= ~ ~( t )  (47) 
t >~ nO 

In his scheme, Wolff ~41/ extrapolates the integrated relaxation time using 
the local derivative of ~(no) for extrapolation: 

R(no)=r q 3 ( n o ) ]  i (48) 
qS(no - 1 )d 

Both methods yield a consistent estimate for zint in the limit no/n-~ 0 and 
n - +  0 0 .  

The method of Madras  and Sokal has a considerable bias. This 
necessitates a large window parameter  no. Madras  and Sokal (33) suggest a 
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self-consistent cutoff parameter no ~> r t. The value of c depends on the pro- 
cess under discussion: Minimizing the mean square error q2 = var + b 2, which 
consists of the variance (33) var = 4V2ntno/n and the bias b, eq. (47) leads to 

n o 1 1 n 
- - ' ~ - -  n Z'in t 2 ~ - l n 1 - ' C i n t ( 1  - e  (-I/~'~)] (49) 

The optimal value of nO/'Cin t depends essentially on the number of effec- 
tively uncorrelated data n/2rim; the second term in Eq. (49) is negligible. 
For typical simulations with n/2Tint = O(104-105) Monte Carlo steps one 
obtains c --- 5-6. The estimation of rint,~ for our three observables J//, IJdf, 
and d o is based on c = 6 .  Figure 8 shows the slow convergence of the 
estimated value r toward its final value. 

We compare these results with those obtained by Wolff's scheme (46), 
(48). As Fig. 8 shows, the estimate r~t,~w i ~ l  of Wolff converges much faster 
than ri.t,"Msi~l. As expected, both estimates agree, the latter being always 
smaller than the first due to a residual bias. The fast convergence does not 

* M S  ,w is better than vi.t,t~gp: in any case one has imply that the estimate "rint, l.a. I 

,w for large parameters c. Otherwise, one to analyze the convergence of Zint, l~l 
might erroneously extrapolate apparently asymptotic behavior to a wrong 

~ W  estimate. In our analysis, we calculate r~m,i~l in the interval c e  [0, 6] and 
average over the interval c E I-3, 6], where we find no systematic trends. 
The resulting estimates of z~.t, ~ for our three observables are summarized 
in Table III. The errors of fint, J have been calculated from averaging over 

t MS 

11 i 

0 . 0 0  2 0 0  4 0 0  ( 3 0 0  8 0 0  1 0 0 0  

Fig. 8. Estimates of the integrated relaxation time "Cint, l.Z., [ calculated from a single run of a 
363 lattice, t~ is identical to the cutoff parameter no of (46). W refers to Wolff's method (48) 
and MS to the method of Madras and Sokal JR(n0)---0]. Our final values and errors of lint 
(Table III) have been averaged over the ensemble of simulations (Table I). 
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Table III. 

Heuer 

Summary of Exponential and Integrated Relaxation Times for 
the Observables [Jl  I, ~, and J t  a 

L "ffexp, id/i Texp, g 7~ exp,..r162 Tint, 1~r162 [ "gint, g "gint, J /  

20 28.3 + 0.2 28.0 ___ 0.6 178.6 + 1.1 27.3 + 0.2 17.7 • 0.2 173 • 3 
26 49.4+0.3 49.7__+0.6 317.5+5.0 47.4+0.4 29.2___0.2 306+5 
30 66.6 + 0.3 67.7 • 1.0 446 __. 7 62.7 + 0.5 37.6 • 0.3 424 ___ 4 
36 96.8___0.7 94.3___1.0 629+11 93.3___0.7 53.7_+0.5 596_+10 
40 121.4_+0.4 128.6• 802+11 116.0__+0.9 67.5_+0.5 733_+14 
46 165+2.0 160+3.0 1005+__12 157.0_+1.5 87.6+_1.0 991• 
50 195+_1.5 195• 1232• 186.0_+2.0 104.0+1.5 1158• 
60 278 _+ 4.0 265 + 6.0 1757 _+ 43 271.0 ___ 3.2 147.0 _+ 2.2 1669 _+ 47 

a The statistical errors have been calculated from the variance over the ensemble of runs for 
each lattice size L. The data for integrated relaxation times refer to the estimation via Wolff's 
method [Eqs. (46) and (48)]. The estimate using the scheme of Madras and Sokal is always 
below but clearly within the error bars. 

independent  simulations of the same length (Table I). The c o m p a r i s o n  
shows that  energy correlations decay by a factor t.8 faster than correlations 
of I~ ' [ .  This means that  the tail of the spectrum pc(T) of (13) carries more 
weight than that  of p i l l (z ) .  Correlat ions of the odd observable J /  decay 
more  slowly by a factor six. Fortunately,  the latter are irrelevant for the 
statistical errors of the rmodynamic  properties. (22) 

The determination of  exponential  relaxation times proceeds in the way 
sketched in Section 4. We perform exponential  fits of our  correlation func- 
tion estimates 43(t) with amplitude and relaxation time as free parameters. 
Figure 1 (with a better time resolution) shows that  J/g and 1~1 seem to 
follow asymptot ic  behavior  below 05 ~_ 0.5. Energy correlations are stronger 
influenced by short  relaxation times; our  initial estimate for the asymptot ic  
time interval is 05e < 0.3. With Z'int,~ (Table I I I )  and our trial value %xp,.~, 
for each observable, we calculate the power spectral density P(~o) in the 
approximat ion  (44), which is compared  to our  estimate/~(co). We find that  
deviations occur for Jr and I~'1 correlations only above 05~-0.6. In  
contrast,  energy correlations reach their asymptot ic  behavior  in the interval 
05,e <0.1 ,  which is unexpectedly low. A fit of energy correlations outside 
this interval leads to a systematic underest imation of ~'exp, g" Our  final 
estimates of all exponential  relaxation times determined in the asymptot ic  
interval are contained in Table III. Errors are estimated from the average 
over our  small ensemble of runs (Table I). 

Critical exponents Zexp,,~ and Zint,~r a r e  obtained by least-square fits of 
the relaxation times to the expected power laws (1 5) and (19). We find very 
good power-law behavior of Zexp, d and zint,,~ (Fig. 9). Fits have been 
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Fig. 9. Double logarithmic plot of power-law fits of exponential relaxation times f~p, ~ and 
"C~xp.i.,uF. The symbol size is given by the error of the data (Table II1). We find equal exponents 
z,~p = 2.09 + 0.01 and a ratio A ze/AI~r I = 6.2. 

performed with error weights (I) and with equal weights (II) for all lattice 
sizes. Comparison of our results I and II in Table IV indicates slightly 
smaller values for Z~xp when calculated with equal relative weights. Our 
results for zim are independent of the weighting method. Table IV contains 
the nonuniversal amplitudes as well. We verify that even observables 
have the same amplitude: Ae~-Al~/~ r. The scaling function of the ratio 
lYexp, odd/'Cexp . . . . . . .  Eq. (45), is f(L/~)=6.2 in the finite-size limit L/~ ~0. 
Additional simulations with less accuracy in the bulk limit L/~>> 1 are 
depicted in Fig. 10. They lead to comparable values for z and to 

Table IV. Dynamical Critical Exponents Zex p and Zin t Obtained from 
Error-Weighted (I)  and Unweighted (11) Fits to Power-Law Behavior T = A L  z ~ 

-~) 2.09 + 0.01 2.10 + 0.03 2.09 + 0.04 
e x p  - -  - -  - -  

A~Ix~ 0.053 0.055 0.33 
~m 2.09 + 0.01 2.07 + 0.03 2.07 + 0.04 

e x p  - -  - -  - -  

A~'x' ~ 0.054 0.059 0.38 

-~J~ 2.095 + 0.008 1.94 + 0.02 2.05 + 0.04 
i n t  - -  - -  - -  

Am 0.051 0.053 0.39 
i n t  

,!u) 2.096 + 0.008 1.94 + 0.02 2.05 + 0.02 
- -  l n t  - -  - -  - -  

A(Ul 0.051 0.053 0.38 
i n t  

~' The main result in the first line shows convincingly clearly that odd and even observables 
have the same dynamical exponent z. For further discussion see the text. 
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Fig. 10. The fit of fexp,~ to the power law %xpj =A l~l-~ in the bulk regime L/~ ,> 1 leads 
to the exponent z = 2.06 + 0.03 for the observables Jr and IJr I. The amplitude ratio A~/A k~l 
well above T~ is 2.0. One can observe the increase of this ratio as T~ is approached from 
above. Below T+ we have studied ]J/I only; the exponential divergence of z~p.~t and its 
crossover to power-law behavior at T~ has not been studied. 

f ( L / ~ )  ~- 2.0 for L/~ ~ oo. This change of the scaling function f with L/~ is 
schematically depicted in Fig. 5. 

Our summary of z values (Table IV) contains some surprising results. 
As expected from universality, all three observables scale with the same 
exponent Zexp = 2.09 + 0.02 within the errors, but this exponent is clearly 
larger than the renormalization group result z-~ 2.02. A similarly interest- 
ing result is that the critical exponents Zint, dl and Zint, i.M] of integrated 
relaxation times agree with the asymptotic exponent Zex p within the errors. 
F rom the initial time dependence of the correlation functions of these 
observables in the interval ~o~ ~< 0.5 we infer that time scales shorter than 
%xp,~ have to be included in a valid description [Eq. (13)] of correlations. 
Thus, there is a small deviation of the measure p~,(r) from a f-like measure 
6(Z-%xp,~(L)) .  The agreement o f  exponential and integrated exponents 
within the errors may indicate that shorter relaxation modes scale with the 
same exponent as %xp,+~,. But since the overlap with slower modes is small, 
this interpretation cannot be proven by our results. It is just one possibility 
to explain our findings. It might as well be possible that within our errors 
zint,~r is smaller than but very near Z+xp, allowing for a different scaling 
behavior of the next-to-leading time scales. This is still an open question. 
In view of the finite-size scaling corrections to be discussed below, a 
clarification of these "fine-structure" effects is highly difficult. 

The difference between zint, e and ze,,p,e definitely exceeds the error. 
This result is in good accord with the initial relaxation of energy correla- 
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tions in the interval qsd(t)>~0.1. We must conclude that next-to-leading 
relaxation times are not negligible and that they scale in a different way 
than the exponential relaxation time %xp,~. 

From the theoretical point of view, the discrepancy of the dynamical 
exponent z from its RG value is very important. In view of the small 
statistical errors the deviation is worrying. The error of the RG estimate for 
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1 - 0 . 1 4  
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Fig. 1 I. Deviations from the expected theoretical behavior described by Zth = 2.02. We have 
fitted Afexp, i.~l _= r l,4:tl/AL zth- 1, i.e., the scaling correction of Eq. (50) to our data, keeping 
zth = 2.02 fixed. One obtains fits with comparable estimators for a large set of parameters A, 
B, and co. The figure shows that scaling corrections must be at least of the order of 10% if 
zth = 2.02 is assumed to be correct. 
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d = 3 dimensions is not known, but the smallness of fluctuation corrections 
in O(e 2) gives no reason to expect that a higher-order expansion in e will 
lead to significant changes. 

We have so far ignored finite-size corrections completely. In static 
quantities, one observes a 1% deviation of exponents like y/v when fitting 
the susceptibility to simple power laws in a lattice interval L e [20, 60]. (16) 
This has been tested by our own static susceptibility data. Dynamic finite- 
size effects must be much larger if they are responsible for the discrepancy 
of our estimated value of z from the theoretical value. To test this idea, we 
fit our most accurate data, the relaxation times %xp, l~l (Table III), to the 
ansatz 

~'exp, [d{[ = AL~'h( 1 + BL -~ (50) 

assuming the theoretical exponent Zth = 2.02 to be correct. With A, B, and 
co as free parameters, we find equally good fits for a large, continuous set 
of parameters. As Fig. 11 shows, it is impossible to get a unique estimate 
of the correct finite-size scaling parameters. However, it is obvious from the 
fits that finite-size effects must be of the order of 10% if zth = 2.02 is 
asymptotically valid. 

7. D E R I V A T I O N  OF z BY A S C A L I N G  M E T H O D  

The numerical coincidence of Zexp,~ r and Zint,~ for both observables 
and 1~1 within our errors leads to the idea that if the integral rint,.~ in (16) 
over the spectrum (13) scales with the same exponent as its suprenum 
%xp, d ,  then the whole or most of the spectrum pd(~) possibly scales in this 
way. This hypothesis can be tested by analysis of the scaling properties (34) 
of the correlation functions. We assume mere scaling 

qSo~( t, L) = ~o( tL z) (51) 

i.e., we make no assumption about the scaling function ~0(x) itself. This 
minimal ansatz has the merit of yielding z in those cases where scaling is 
valid, but the explicit functional form of ~0(x) is not known. Moreover, the 
comparison of data errors and fit errors allows a determination of the data 
interval where scaling is fulfilled. 

Our scaling method works as follows. For  each lattice size v 
(v = 1,..., ~c), we have m(v) correlation function estimates {~( t l )  ..... ~(tm(u))}. 
We have arranged the distance between measurements such that m(v)= 
10(~250. In order sensibly to apply the scaling method, one should collect 
an equal amount of data for all lattices in the interval [x~, xb] where scaling 
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is expected. An approximate value for z is therefore desirable. The usual 
fitting procedure (46) is to minimize the weighted estimator 

~. '~(~ [~(t, L~) - r 2 
Q g (52) 

v= ~1 ,=,1 var(~(t, L~)) 

by appropriately chosen parameters of the function q~o(X) and z, 
respectively. The denominator is the estimated variance of ~(t, Lv), (27). 

In order to design a "fitting procedure" to an unknown scaling 
function ~b0(x ) it is sensible to formulate the estimator Q of (52) in 
the inverse way. We assume that q~o(X) has an inverse ~b(o-1)(x), so that 
to(X, L~)= L~q~(o 1)(x) for each Lv. An estimator equivalent to Q of (52) is 
then given by 

@ r [ i(0,  rv ) -  to(tL~ -Z, L~)] 2 
O (53) ~-1/~ ~=~IL var(i(~,Lv)) 

where we assume q~ to be the argument and the corresponding time i to be 
the estimated quantity with variance var(i(r L)) = var(OS)/~'2(t, L). Here 
qs' is the derivative with respect to the time t. 

Applying the scaling method to an unknown function Do(x), we 
minimize the weighted deviation of all pairs of the set {~({t}, L~)} and 
{ i( { q5 }, L,.)}, respectively, from one another: 

1 L r163  [i(qS'L~)-i(q)'L~)]2 (54) 
(~ = ~pp ~ = el [var(i(Os, L.) )  var(i(q~, r. ,))] ,/2 v , # = l  

v -< ,Iz 

The estimator 0 is normalized to the number Np of lattice pairs. Since we 
have only a discrete set of data points {(t~, qs(t~)),..., (tmO,), r for 
each lattice size Lu, we proceed as follows: for each data point 45 of lattice 
Lu we look up the corresponding time i(r L,,) in the data records. The 
corresponding time i(q~, Lu) of lattice L~ which has the same value of q5 is 
calculated by linear interpolation of the data. To this end, data points 
should be close to one another. 

This method works excellently if only one parameter is to be estimated 
(here z) by the data collapse. If there are two or more parameters as in a 
data collapse of unnormalized correlation functions ~b(t, L) (here z and 7/v 
are free parameters), a unique determination of the parameters is 
impossible. 

We apply the method to our best correlation estimates q~l~ul(t) using 
the complete set of lattice sizes L~  [20, 60] but different intervals of the 
scaling variable x = tL-fl In the initial relaxation phase q5 e [0.9, 0.6], the 
best collapse is obtained for Z~oa~,l.t~l = 2.05 _+ 0.02, but with a normalized 
estimator Q-~ 18. cs4/ In the interval q~e [0.6,0.1] we find the exponent 
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Fig. 12. The data collapse of ~l~l( t ,  L) leads to good scaling behavior in the interval 
45 E [0.6, 0.1]. The deviation from scaling behavior in the initial relaxation phase 
45 E [0.9, 0.6] is not visible within the resolution of the figure. The scatter of the data below 
45 _~ 0.1 is purely statistical (see Fig. 2). 

~al,  l,gi = 2.085 + 0.01 and an estimator Q ~- 2.6 (Fig. 12). Since a value 
Q -~ 1 should be found if scaling is fulfilled within the statistical errors of 
the data, we conclude that the initial relaxation phase does not fulfill 
scaling to the expected accuracy. The average deviation in the interval 
~b E [0.9, 0.6] is a factor four times larger than the statistical errors of the 
data. In the interval q~e [0.6,0.1], which is within our asymptotic time 
regime according to our analysis (Section 6), the data fulfill scaling very 
well. The exponent Zsca~,i~u q - -2 ,085_  0.01 does not change upon variation 
of the ~b interval, zsoal, l~, I is in excellent agreement with our estimates 
Ze• I = 2.09 _ 0.01 and zi,t,l~ I = 2.095 + 0.008. 

The numerical agreement of these exponents is now well understood: 
if scaling of ~(t,  L) is fulfilled with the exponent Zsca~,i~l ~-Zexp, i.~l in dif- 
ferent intervals, then the integral zi.t, d over q)L~l(t) must scale as well with 
the same exponent zi.t, I,Ju" The scaling method is naturally more sensible to 
a variation of the exponent Z~c~ with the scaling interval than the analysis 
of the integrated relaxation time. This is clear since rim is an average over 
the whole spectrum, whereas the scaling method allows one to test scaling 
in separate intervals. In our case, the deviation of z~c~,l~, k in the initial 
interval ~ [-0.9, 0.6] from the asymptotic value Z~oa~,l.~ I =2.085 +0.01 is 
pretty small, so that the difference is not detectable in the scaling analysis 
of ~i,~,l~i (Section 6). 

The scaling analysis of energy correlations shows that there are large 
nonscaling contributions to ~b~(t). These contributions are expected 
because the specific heat C ~  Ldr = 0) contains large nonsingular con- 
tributions. (47) Our scaling analysis is inappropriate in this case because 
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more parameters would have to be determined. However, the bad scaling 
properties of ~ ( t ,  L) explain the unusual exponent zint, ~ found from the 
scaling of Tint, ~ in Section 6. Large contributions to ~ ( t )  by smaller 
relaxation times r < rexp are important for the energy. These contributions 
scale in a different way and lead to smaller effective values of zim.e, 
Eq. (16). 

8. OUTLOOK 
We have presented a large-scale simulation about the dynamical criti- 

cal behavior of the three-dimensional Ising model. As one of the standard 
model systems in statistical physics, its understanding is of vital importance 
for further progress in the field of dynamic critical phenomena. It is 
generally expected that the dynamic renormalization group is a sound 
description. We believe that the disagreement of renormalization group 
results and Monte Carlo simulations originates from technical problems. 

On the side of the renormalization group, the hardest technical 
obstacle for a reliable dynamic exponent z in d=  3 dimensions is the 
extrapolation and resummation, respectively, of perturbation analysis. 
Until now, the renormalization group has been calculated to second order 
in e = 4 -  d and in an expansion around dimension d=  1. The numerical 
interpolation between these expansions is not well founded. A significant 
improvement could be obtained by an application of the renormalization 
group in fixed dimension. (48) Similar to static critical phenomena, irrelevant 
operators should be included into the formalism in order to obtain Wegner 
corrections (49~ for dynamic critical phenomena. Finally, a (finite-size) 
scaling analysis of the relevant part of the spectrum of the Liouville 
operator would be most welcome. 

Monte Carlo work is inherently confronted with technical problems 
induced by random number generation, the finite size of the system, finite 
length of simulations, etc. In view of these aspects, it is not expected that 
a single simulation will clarify the situation and yield a reliable value of the 
dynamic exponent. In order to eliminate technical obstacles, the simulation 
and analysis should be performed with different random number gener- 
ators, dynamics, system sizes, and boundary conditions. The large-scale 
simulation presented here is a part of the puzzle. 

However, we have also presented a systematic approach to the deter- 
mination of exponential relaxation times. These time scales are crucial for 
the comparisonwith theory as long as theory can only deal with asymptotic 
behavior. The use of the power spectral density for the long-time analysis 
of the dynamics is new. The great error reduction compared to correlation 
function estimates shows that it is convincing tool. The agreement of our 
numerical estimates of Zexp,,~, and zint, ~, for both ~ = ~ "  and d =  ]Jr 
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within the statistical errors is a surprising result. For energy correlations, 
Zexp, e and Zint, e differ significantly. Both results are substantially confirmed 
by the scaling analysis in the last section. However, in view of significant 
finite-size scaling corrections, we cannot make strong statements about an 
exact equality or inequality of integrated and exponential exponents and 
about the scaling behavior of next-to-leading relaxation times. 

The dynamic exponent z -- 2.09 __ 0.02 has to be viewed with the same 
care as the interpolation of renormalization group results to dimension 
d =  3. We need a closer look at dynamic finite-size corrections, which have 
been ignored completely in earlier work. An extension of the present work 
to larger lattices but with the same accuracy is necessary to achieve this 
aim. 

APPENDIX  

In this Appendix we provide a short summary of the estimation of 
frequency-dependent properties in time series analysis (36) which is 
indispensable for the analysis of Monte Carlo simulations. 

The estimator/*(co) in (30) of the power spectral density provides an 
instructive example that a natural estimator may be statistically useless. 
The reason for the failure of I* becomes apparent from Eq. (29), which is 
a sum over n sample autocovariances ~(t),  each of which has a variance 
of O(1/n). (36) Thus, I*,  Eq. (29), has a variance of O(1) and is not a 
consistent estimator of P(~o), Eq. (20). Note that this argument is not 
affected by the correlation (26) of the ~(t) for different times. One may say 
that the tail of the sum/*(co) in (29) contains only noise but no informa- 
tion, so that the good statistics contained in the initial terms of the sum is 
lost in the noise of the tail. The remedy is to cut off the sum in an 
appropriate way so that the noise is lost but the valuable information is 
retained. 

This problem and its solution for the integrated relaxation time 
"tin t - ~ -  nP(0) have been discussed by Madras and Sokal (33) and in a modified 
way by Wolff. (41) The obvious solution is to truncate I* of (29) at some n o 
and neglect the tail. This defines the truncated sample spectral density 
function (36) 

1 no 
P.(o)=~-~  ~ ~(t) cos~ot (A1) 

l =  - - / 2  o 

which has a variance var(P,)(m)=O(no/n). (36) In the limit of infinite 
record length n the variance vanishes as 

var(P~(co)) ~ 0 ( n'n~176176176 ) n  (A2) 
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However, the truncation induces a bias, so that the estimator (A1) is only 
asymptotically unbiased. The idea to truncate the sum (29) is generalized 
to smooth cutoffs by other lag windows {2.(0} in the following way: 

1 ( . -  1) 

P.(~o) = 2---~ ~" 2.(0 d(t) cos e)t (A3) 
t =  (n--  1) 

A variety of lag windows are commonly used in time series analysis. ~ 
They all have in common that their initial part has full weight and 
decreases to zero for longer times in their characteristic way. 

It is favorable to introduce the spectral window which is the Fourier 
transform of the lag window: 

1 (n--  1) 

W.(O) - 2~ ~ 2n(t) e x p ( -  lOt) (A4) 
t =  ~ ( n - -  1) 

Then the estimator /~,,(co) is an integral over the frequency interval 
[ -~, +~]: 

/3.(co)=j_~ I*(O) W.(e)-O) dO (A5) 

Written in this way, the estimator /3.(co) is a locally weighted sample 
spectral density function whose values are weighted averages over small 
intervals in the frequency domain. The form of the spectral window W.(O) 
is related to the lag window: the more slowly 2n(t) decays to zero, the more 
concentrated is its spectral window Wn(O). The bias b(rn) = [/~.(o0)] - P(co) 
induced by the window for a finite time series is given by (36) 

f 
TC 

b(co) ..~ �89 02W.(O) dO (A6) 
- - r e  

The bias depends on the width of the spectral window and on the cur- 
vature of the spectral density P((~). One may tailor the form of the spectral 
window to the spectral density in order to obtain best-adapted windows for 
each case. The variance of the estimate (A5) is given by 

v a r ( / ~ . ( c o ) )  ~ - ( 1  + 6~o,o,~) P2(co) 2rc ~ ~ W2.(O) dO 
H J r~ 

which may also be written as a sum over times as 

(A7) 

var(/3~(m)) (1 +6~,,o,~)P2(e)) 1 "-~ - E (AS) 
r/ - ( n -  1) 
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We argued in Section 3 that the covariance of the periodogram I n of (29) 
calculated from a finite record length vanishes, leading to wildly fluctuating 
estimators In(e)). The covariance of the spectral estimate /3(09) of (A1) is 
given by (36) 

cov(P,(o)~), Pn(co2)) ~--~-(_~j P2(0) Wn(o91 - O) Wn(c % -  O) dO (A9) 

As expected, it vanishes only in the limit of an infinite record length, since 
Pn(o)l) and Pn(e)2) are asymptotically uncorrelated. In a finite time series, 
the covariance is restored by the weighting procedure, so that one obtains 
a smooth sequence {Pn(o))} of data points. 

Finally, we mention some explicit results for the Daniell window used 
in this paper. The Daniell window performs an average of the periodogram 
data i*(co) over small frequency intervals. It is defined by 

W,(O)= {~ ~ fOrotherwise]01 ~< re~no (A10) 

From the result for the covariance (A9), one realizes that the estimators at 
two frequencies co 1 and e92 are effectively uncorrelated if l e ) l -  ~o21> 2re/no. 
The variance of the Daniell window estimates follows from (A7) as 

var(P,(oo))',~n~ (o9 r 0, +n)  (All)  
n 

which agrees with previous considerations of the truncated sample spectral 
density (A1). The bias b(co) of the Daniell window estimate follows from 
(A6) as 

~2 

b(o~) - 6n----~ P"(co) (A12) 

Similar results with different numerical factors may be calculated for other 
windows; they are summarized in ref. 36. 

There is no unique answer to the question of what are the best choices 
of the record length n, the type of window, and its parameter no. They 
depend on the spectral density to be estimated, on the frequency interval, 
on the desired resolution, and on other aspects discussed in the 
literature. (36) 

We apply the results summarized above to the analysis of Monte 
Carlo simulations. In the general case, one may vary the record length n 
and choose a certain spectral window and its window parameter no. Here, 
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we assume a fixed record length n and we assume that one is interested in 
the complete functional dependence P(co) of the power spectral density in 
some frequency interval. As discussed above, one has to compromise 
between bias and variance. This is accomplished by minimizing the relative 
mean square error 

var(/~) b 2 
q2(CO) = p~+p2 (AI3) 

no P"(co) 

n n o 
(A14) 

where e and fl are numerical factors characteristic of the chosen window 
[ a =  1 and fl=~4/36 for the Daniell window (All) ,  (A12)]. The optimal 
choice of the window parameter no follows as 

no = ( ~ )  1/5 P----p2/Snl/5 (A15) 

which depends on the curvature of the power spectral density at frequency 
co. The resulting mean square error (A13) of/~,(co) is given by 

n-4/5 (A16) ,:(CO) = - ~  p(CO) 

The squared bias contribution to q is 1/4 of the variance in this optimal 
solution. Equation (A16) shows that the mean square error of the spectral 
estimate /3 (co) of (A3) decreases as n 4/5, so that it is a consistent and 
asymptotically unbiased estimate. The optimal solution no of (A15) 
depends on the frequency co via the bandwidth B - 2  ]P/P"I 1/2 of the 
spectrum. One may either choose a frequency-dependent value of no(CO) in 
(A15) or simplify matters by taking the lower limit of the bandwidth over 
the whole interval to calculate a unique value of no. In the latter case, the 
mean square error ~/2(CO) may be far from optimal in a large region of the 
frequency interval. As an example, we assume a simple exponential decay 
of correlations with a relaxation time ~. The bandwidth of its Lorentzian 
spectrum (39) near CO = 0  is given by B(co)= x/2/T. The optimal window 
parameter (A15) given by 

- -  = (A17) 
"C 

depends on the number of effectively uncorrelated data. For the Daniell 
window, a typical value for a large-scale simulation with n = 105~ time 

822/72/3-4-27 
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steps like the one presented in this paper is given by no = 21z. This value 
refers to the vicinity of the interesting long-time behavior. For short times 
the bandwidth increases significantly, so that the bias (A6) is reduced even 
for smaller values of n o . In our analysis we compromised between the 
above-mentioned alternatives and split the spectrum into a short- and a 
long-time regime with different values of n o . 
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